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Recently, a new melting law for high pres­
sures has been proposed by Kennedy. 1 In terms 
of the relative compression ~o VIVo of the solid 
at normal tempera~ure at a pressure P, the 
purely empirical result can be expressed as 

where TM is the absolute temperature at fu­
sion under the melting pressure PM =P and 

(1) 

To is the corresponding normal value. The 
purpose of this communication is to use the 
Lindemann law as reformulated by Gilvarry, 2,3 

which was applied by Gilvarry4 to fusion at 
extremely high pressures, to derive Eq. (1) 
and to point out the connection of the result 
with the Griineisen5 theory of the normal prop­
erties of solids. Further. it will be shown 
that Eq. (1) is equivalent in the special case 
of a restricted range of melting temperatures 
to a relation given previously by Gilvarry, 8 

in which the constant C appears in terms of 
the Griineisen parameter of the solid at the 
normal fusion point. 

For a polyatomic solid having n atoms in 
the stoichiometric compound, the Lindemann 
law for the melting temperature TM in the 
case of classical excitation of the lattice vi­
brations can be written from I and II as 

(2) 
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where KM and V M are the bulk modulus and 
molecular volume, respectively, of the sol­
id at fusion, R is the gas constant, and S1 is 
an approximate constant defined in I. Select­
ing the volume V and absolute temperature 
T as independent variables, one can express 
the variable value KM of the bulk modulus K 
in terms of its value Ko at the initial point 
(Vo. To) chosen on the fusion curve by 

The path of integration in the V. T plane con­
sists of the horizontal line segment from V = V 0 

to V = VM at the constant temperature TO. fol­
lowed by the vertical line segment from T = To 
to T = T M at the constant volume V M, as im­
plied by subscripts on partial derivatives and 
by limits of integration. Using the mean-val­
ue theorem to replace integrands by averages, 
one obtains 

T M=TO[I- \:M ] [1-((::)T)av\:M 
(4) 
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from Eq. (2) as an exact consequence of Linde­
mann's iaw. Equation (4) yields Eq. (1) direct­
ly , with the constant C given by 

c=-(:: ((:~t)a:l] 

x [1-:: ((::L)aJ, (5) 

when terms of order (VO- VM )2 and (VO- V M) 
x (TM-TO) are ignored. Neglect of these remain­
der terms implies that C can be only an approxi­
mate constant when fitted by Eq. (1) to experi­
mental data, in general, as follows also from 
the weak dependence necessarily exhibited by 
the mean values of partial derivatives in Eq. (5) 
on the ranges of the variables over which they 
are averaged. 

To reduce Eq. (5) to more tractable form, 
consider the GrUneisen parameter I' of the . sol­
id as written in I, y=-t(BlnK/BlnV)T-l Equa­
tion (5) yields 

(6) 

I' O=-i(BlnK/ BlnV) O-i, (7) 
av, av, 

in which Vav is an average value of the volume 
over the range Vo to VM, Kav 0 is a correspond-, 
ing average of K over volume at the fixed tem-
perature To, and (BlnK/ BlnV)av 0 represents , 
a similar average at fixed temperature To' 
The parameter g is determined by 

g=K (11 -21' -i)a T, (8) 
M,av M,av M,av M,av 0 

in which KM , av' 11M, av' I'M, av' and aM, av 
represent mean values of K JKO , -(Ka)-l(BK/ 
eT)p, 1', and a, respectively/ over the tem­
perature range TO to TM at the fixed-volume 
V M, where a is the volumetric coefficient of 
thermal expansion. For experimentally deter­
mined fusion curves in the extreme cases of 
the highly compressible alkali metalsB and the 
relatively incompressible metal iron,9 one can 
show that g can be neglected relative to unity; 
the conclusion is probably general. 
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Note that the mean values of dependent vari­
ables entering Eqs. (5) and (6) do not represent 
averages along the fusion curve itself, as tak-
en in III to derive the Simon equation PM=Ar(TM / 
TO)B_11 from the Lindemann law and Griineisen 
theory. For TM sufficiently close to TO, how­
ever, averages as taken here and correspond­
ing averages along the fusion curve can both 
be replaced by values at the initial point (Vo' 
To), approximately, and the value Yo 'of t~e 
Griineisen parameter at this point can be used 
as an approximation to Yav, 0 of Eq. (7) and 
to Yav of m. In this limit, C of Eq. (6) reduces 
to the value 

C = 2(yo-~)' 

and the law of corresponding states given in 
III states that 

(9) 

T / T = (V / v )2(1'0-1) 
MOO M ' 

(10) 

which a binomial expansion shows to agree with 
Eq. (1) when C has the value of Eq. (9). Under 
the same condition, B becomes i(6yo+ 1)/(31'0 
-1) and Eq. (1) is equivalent to Simon's result 
with 

(lla, b) 

for the constant C in terms of the Simon expo­
nent B and the converse, respectively. The re­
lation Yo = tqA V / L + t derived in I for Yo and 
the corresponding value from Griineisen's law 
yield 

C=qKoAV/ L , C=2(a
O
K

O
V

O
/ Cv O-~), (12a,b) , 

respectively, where q is a parameter closely 
equal to unity, AV and L are the change in vol­
ume and the latent heat at fUSion, respective­
ly, and aO and CV, 0 are values at the initial 
point of a and the heat capacity Cv for constant 
volume, respectively. 

Values of Yav, 0 for the alkali metals deduced 
by means of Eq. (6) from the constants C giv­
en by Kraut and Kennedyl are compared in Ta­
ble I with corresponding values of Yav from 
III and of Yo from I; the final entry in each case 
is the value of I' under standard conditions from 
GrUneisen's law. The parameter Eav was de­
termined from the arithmetical mean compres­
sion (AOV/VO)av=l-Eav from data of Bridg­
manlO for the alkali metals corresponding to 
the pressure ranges (extending up to 50 kbar) 
indicated by experimental points in the plot 


